
H2DoS: An Application-Layer DoS Attack
Towards HTTP/2 Protocol

Xiang Ling1(B), Chunming Wu1, Shouling Ji1,3, and Meng Han2

1 Zhejiang University, Hangzhou, China
{lingxiang,wuchunming,sji}@zju.edu.cn

2 Kennesaw State University, Kennesaw, GA, USA
menghan@kennesaw.edu

3 Alibaba-Zhejiang University Joint Institute of Frontier Technologies,
Hangzhou, China

Abstract. HTTP/2, as the latest version of application layer protocol,
is experiencing an exponentially increasing adoption by both servers and
browsers. Due to the new features introduced by HTTP/2, many secu-
rity threats emerge in the deployment of HTTP/2. In this paper, we
focus on application-layer DoS attacks in HTTP/2 and present a novel
H2DoS attack that exploits multiplexing and flow-control mechanisms
of HTTP/2. We first perform a large-scale measurement to investigate
the deployment of HTTP/2. Then, based on measurement results, we
test H2DoS under a general experimental setting, where the server-side
HTTP/2 implementation is nginx. Our comprehensive tests demonstrate
both the feasibility and severity of H2DoS attack. We find that H2DoS
attack results in completely denying requests from legitimate clients and
has severe impacts on victim servers. Our work underscores the emerging
security threats arise in HTTP/2, which has significant reference value
to other researchers and the security development of HTTP/2.

Keywords: Web security · DoS attack · HTTP/2 protocol

1 Introduction

Hypertext Transfer Protocol (HTTP) is a dominant and fundamental applica-
tion protocol, and it powers the data communication on the Internet. Recently,
the latest version of HTTP protocol - HTTP/2 [1] has been standardized and
received much attention as it can reduce the load latency of web pages by address-
ing some performance inhibitors inherent in HTTP/1.1 and HTTPS [8]. HTTP/2
protocol is primarily designed for improving performance by introducing new
features, however, which can result in new and potential security threats. Those
security threats introduced by HTTP/2 may have damaging effects on the Inter-
net in terms of both end users and web servers, because the current HTTP/2
protocol has been adopted by most major browsers and many websites [8]. This
brings up a significant challenge of how to explore new security threats against
HTTP/2, and motivates us to begin the research of this paper.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 550–570, 2018.

https://doi.org/10.1007/978-3-319-78813-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_28&domain=pdf


H2DoS Attack 551

The application-layer Denial-of-Service (DoS) attack is a form of DoS attacks
where attackers target at the application-layer of web servers. By exploring char-
acteristics and vulnerabilities of application layer protocols, application-layer
DoS attacks aim to exhaust server resources that the application requires to
function properly [23]. The application-layer DoS has become one of the most
damaging attacks to threat the Internet ecosystem [5] in 2016 and was believed
to increasingly escalate in the future. Since the HTTP/2 protocol is a new and
significant part of web servers in terms of application layer protocols, HTTP/2 is
also supposed to face application-layer DoS attacks. In this paper, we narrow our
research scope and focus on application-layer DoS attacks towards the HTTP/2
protocol. We present a novel H2DoS attack, which is the first real application-
layer DoS attack targeting at HTTP/2-enabled web servers. By exploiting mul-
tiplexing and flow-control mechanisms in HTTP/2, the H2DoS attack can com-
pletely deny legitimate users from accessing the victim server. Moreover, this
attack also inflicts more severe impacts on server resources compared with other
application-layer DoS attacks, which can result in severe damages to web servers.

Concretely, to investigate the potential extent of application-layer DoS
attacks against HTTP/2 protocol in practice, we first perform a large scale mea-
surement to understand the current deployment and implementation of HTTP/2.
We find that 14% of Alexa’s top million websites [11] have already begun to sup-
port HTTP/2 protocol. Moreover, most of these websites adopt nginx [17] as the
server-side implementation, which can be strongly affected by our H2DoS attack.
Then, we analyze two new features introduced by HTTP/2: flow-control and mul-
tiplexing mechanism, and find that both of them are vulnerable to application-
layer DoS attacks. Based on those analyses, we propose the novel H2DoS attack
which exploits both flow-control and multiplexing mechanisms. Our proposed
H2DoS attack can disrupt or even completely deny legitimate user from access-
ing the victim web servers. Next, we examine both the feasibility and severity
of H2DoS attack in our experiments. Our experimental tests show that victim
web servers reply with HTTP 500 (Internal Server Error) code to legitimate
users during H2DoS attack. This result indicates that a real denial of service
takes place on victim web servers. Even worse, we find that H2DoS attack can
massively consume server resources, and compared with other application-layer
DoS attacks, it inflicts more severe impacts on the performance of victim servers.
Overall, the main contributions of this paper can be summarized as follows:

– We provide a comprehensive security analysis of the HTTP/2 protocol speci-
fication, especially focusing on its multiplexing and flow-control mechanisms.
According to our analysis, we find that both multiplexing and flow-control
mechanisms are vulnerable to application-layer DoS attacks.

– We propose a novel application-layer DoS attack against HTTP/2, H2DoS.
H2DoS exploits vulnerable multiplexing and flow-control mechanism of
HTTP/2 protocol, and therefore can result in denial of service on victim
servers.



552 X. Ling et al.

– We systematically validate H2DoS attack (feasibility), and evaluate its impact
(severity) by performing extensive experiments, which to the best of our
knowledge is first such an attempt.

The rest of this paper is organized as follows. We first review HTTP/2 and
application-layer DoS attacks in Sect. 2. Next, in Sect. 3 we briefly describe
current deployment and implementation information of HTTP/2 in practice.
Section 4 presents the threat model of H2DoS attack in detail. We examine both
the feasibility and severity of H2DoS attack through extensive experiments in
Sect. 5. We also give further discussions on mitigation for H2DoS attack and
summarize the related works in Sects. 6 and 7. Finally, the work is concluded
and the future work is addressed in Sect. 8.

2 Background

2.1 Application-Layer DoS Attack

Denial-of-service (DoS) attack is one of the most damaging attacks as it intends
to deny legitimate users from accessing network resources and destroy the
Internet ecosystem. Originally, DoS attacks basically mean network-layer DoS
attacks, which mostly abuse TCP, UDP and ICMP protocols to exhaust net-
work resources of the victim (e.g., bandwidth, sockets, etc.) and further deny
its services. However, this kind of DoS attacks has been fully studied for years
and already been mitigated by many industry solutions. In order to evade such
mitigation solutions, DoS attacks have been evolved to sophisticated application-
layer DoS attack [22] as their stealthier appearance and lower attack cost than
traditional network-layer DoS attacks.

Concretely, application-layer DoS attacks focus on disrupting or even com-
pletely denying legitimate users from accessing the victim web server by exhaust-
ing its resources, including not only network bandwidth and sockets, but also
connections, CPU, memory, I/O bandwidth, etc. There are basically two types
of application-layer DoS attacks - HTTP DoS and HTTPS DoS attacks, as both
of them are based on two dominant protocols that used by the application layer.

1. HTTP DoS. HTTP DoS attacks normally exploit seemingly legitimate
HTTP GET/POST requests to occupy all available HTTP connections that
permitted on the web server. Slowloris [6] is one of the most effective HTTP
DoS attacks against many popular types of web server softwares like Apache
and nginx. If an attacker initiates an HTTP request to open several connec-
tions to a server and periodically feeds the server with data before reaching
timeout, the HTTP connection would remain to open until the attacker closes
it. Ultimately, it easily fulfills the maximum concurrent connections of the web
server and takes the server down.

2. HTTPS DoS. HTTPS layers HTTP on top of Transport Layer Security
(TLS), which encrypts all communication data for end-to-end security and
easily evades security managements [13]. Hence, HTTPS DoS can further



H2DoS Attack 553

challenge many existing web application firewall detection solutions, as most
of the solutions do not actually inspect encrypted traffics [10]. In addition
to bypassing DoS prevention efforts, as encrypted HTTP attacks add burden
of encryption and decryption, HTTPS DoS can exhaust all server resources
by leveraging all possible approaches [7], such as encrypted SSL floods, SSL
renegotiations and HTTPS floods.

Currently, the application-layer DoS attack increasingly escalates and has
become a significantly severe threat for web servers. According to Radware Emer-
gency Response Team’s (ERT) annual report [5], 63% of its respondents have
experienced application-layer based attacks in 2016, and 43% of experienced an
HTTP flood, while 36% experienced an HTTPS flood.

2.2 HTTP/2 Protocol

Overview. HTTP/2 protocol is the latest version of HTTP protocol that dra-
matically reduces the load latency of web pages by addressing some perfor-
mance inhibitors inherent in HTTP/1.1 or HTTPS. Shortly after being standard-
ized as RFC 7540 [1] in 2015, HTTP/2 is experiencing an exponential growing
industry adoption with both servers and browsers. Originally, HTTP/2 protocol
mainly succeeds to SPDY [2], which is an experimental application-layer protocol
designed by Google as a replacement for more efficient communication transmis-
sion [9]. Basically, HTTP/2 reserves majority of SPDY protocol, except with
several changes, such as a new header compression for HTTP/2 - HPACK [3]
instead of gzip or deflate used by SPDY.

The primary goal of HTTP/2 is to reduce the web page load latency by pro-
viding an optimized communication transmission. HTTP/2 enables fully request
and response multiplexing, minimizes transmission overhead with support of
flow-control and server push, and replaces with a less redundant header field
compression method. Below, we detail three optimized features of HTTP/2 that
related to our study and omit the other features.

1. Frame Unit. HTTP/2 protocol introduces the frame unit as the basic pro-
tocol unit to be exchanged between servers and browsers. There are ten dif-
ferent types of frames used to serve distinct purposes in the establishment
and management of HTTP/2 connections or streams. For instance, WIN-
DOW UPDATE is a frame that used for HTTP/2 flow-control mechanisms.
But in this paper, we will manipulate it and other frames to create a new
application-layer DoS attack against HTTP/2.

2. Multiplexing. HTTP/2 initiates only one single TCP connection to one
domain and multiples HTTP requests and responses. HTTP/2 can dramat-
ically reduce the load latency of web pages, as the multiplexing feature not
only reduces the number of TCP connections but also SSL encryption over-
head at both browser and server sides. For the same reason, the multiplexing
feature also becomes actually an important amplification factor to enhance
the impact of our attack.



554 X. Ling et al.

3. Flow-Control. Flow-control is one of the most distinguish features of
HTTP/2, which can be used for both individual streams and the whole con-
nection. The flow-control feature ensures that streams on the same TCP
connection do not negatively interface with each other. The flow-control also
allows customized algorithms to optimize data transmission between servers
and browsers, especially when their resources are limited. This actually poses
a severe security threat that an HTTP/2 connection can demand a greater
resources to operate than an HTTP/1.1 connection.

The above three features of HTTP/2 protocol enable a significant reduction of
page loading time and mitigate some existing security threats [4] to some extent.
However, adopting a new protocol can bring new security threats since new
features of HTTP/2 extend the new attack surface towards clients or servers. In
fact, both multiplexing and flow-control features described above are vulnerable
to the application-layer DoS attack, which motivates us to propose our H2DoS
attack. We will discuss those new features and their potential vulnerabilities in
more detail in Sect. 4.

3 HTTP/2 Current Deployment

To investigate the potential extent of application-layer DoS attacks against
HTTP/2 protocol in practice, a large-scale measurement is performed to inves-
tigate the current HTTP/2 deployment and its implementation. To this end, we
build a measurement platform to conduct real crawling of the exact domain of
all sites provided by Alexa top one million ranking list [11]. In this section, the
Application-Layer Protocol Negotiation (ALPN) extension [12] is first employed
during TLS handshake to measure how many websites adopt HTTP/2. Then,
we extract the HTTP/2 implementation software information within the estab-
lished HTTP/2 connection. Notice that our statistics results are all based on
experiments and observations from January 10th to January 13th in 2017.

3.1 Measurement Setup

Generally, establishing an HTTP connection can be divided into three phrases:
TCP handshake, TLS handshake, and application-layer communication. Figure 1
illustrates the process of HTTP/2 connection establishment. To answer the first
question that how many websites adopt HTTP/2 protocol, we observe the ALPN
extension [12] of TLS handshake within an HTTP/2 connection in step ❸ and
❹ of the Fig. 1. The ALPN extension is used for application-layer protocol nego-
tiation in exchange of Hello message: the client provides a list of optional proto-
cols which it supports and the server can respond with a selected protocol that
want to use. Therefore in this measurement, if a website negotiates “h2” as the
selected protocol within ALPN, we consider that the website adopts HTTP/2
protocol in terms of the application layer.



H2DoS Attack 555

Fig. 1. Establishment process of an HTTP/2 connection: TCP handshake is first com-
pleted in step ❶–❸, followed by a TLS handshake in step ❹–❻. Then after step ❼ and
❽, the HTTP/2 connection is finally established.

Another question is how about implementations of websites enabled
HTTP/2. Basically, an HTTP/2 connection starts with sending the connec-
tion preface, called Magic frame and followed by a SETTING frame and/or
WINDOW UPDATE frame in step ❼, which used for flow-control mechanism in
HTTP/2. After that, by sending a HEADERS frame, we could receive a HEAD-
ERS response frame. Normally in HEADERS response frame, we find the exact
implementation software information of the website through HTTP “Server”
header field.



556 X. Ling et al.

Table 1. Summary of protocols deployment of Alexa’s top million websites

Protocol Description # %

HTTP/1.x Websites that not support TLS 465,693 46.57%

HTTPS(pure) Websites that purely support HTTP/1.1 over TLS 355,025 35.50%

HTTP/2 Websites that support HTTP/2 over TLS 143,471 14.35%

SPDY Websites that announce support SPDY 25 - - -

Others Websites that cannot accessible or only support
other protocols like QUIC etc.

35,786 3.58%

Fig. 2. Top 15 popular HTTP/2 server implementations

3.2 Measurement Result

HTTP/2 Deployment. Table 1 summarizes the current protocols deployment
of Alexa top million websites, including HTTP/1.x, pure HTTPS, HTTP/2,
SPDY and others. The table shows that there are around 50% websites sup-
porting TLS connection in their web servers, in which 28.78% of websites have
already supported HTTP/2 protocol via ALPN extension in TLS handshake. In
addition, we also report that 14.35% of websites have supported HTTP/2 in top
million websites. It implies that numerous website servers that support HTTP/2
are facing potential security threats including application-layer DoS attacks. We
also believe that there will be more websites adopt HTTP/2 along with more
security threats, which can leads to severe damage to the Internet.

HTTP/2 Implementation. We record HTTP/2 implementation informa-
tion among all HTTP/2-enabled websites via HTTP/2 HEADERS frame in
our measurement platform, in which we observe more than 414 different kinds
of server implementations in total. For visibility, Fig. 2 plots top 15 popular
server-side implementation softwares powering HTTP/2 websites. In spite that



H2DoS Attack 557

cloudflare-nginx and nginx are top two that used as implementation softwares
of HTTP/2 websites, other variants like tengine, nginx-reuseport and yunjiasu-
nginx also support thousands of HTTP/2 websites. As nginx community is the
most prevalent HTTP/2 implementation that adopted by websites on the Inter-
net, we choose the latest nginx stable implementation as the server-side HTTP/2
implementation in latter experiments.

4 Threat Model: H2DoS Attack

In this session, we begin with a comprehensive security analysis of HTTP/2
flow-control mechanism and then present our novel H2DoS attack which exploits
multiplexing and flow-control mechanisms of HTTP/2 protocol in details.

4.1 HTTP/2 Flow-Control Mechanism Analysis

Flow-control mechanism is one of the most distinctive features enabled by
HTTP/2 protocol that attempts to optimize the traffic transmission between
browsers and servers. Generally, there are two types of frame that used for
application-level flow-control in HTTP/2 protocol: WINDOW UPDATE and
SETTINGS frame. In an established HTTP/2 connection, the server and the
client exchange configuration parameters including some flow-control parame-
ters in SETTINGS frame, then in more fine-grained frame layer, the window
size of flow-control can be updated by WINDOW UPDATE frame that applied
to a single frame or all frames in the HTTP/2 connection.

SETTINGS Frame. SETTINGS frame, which is used to inform the opposite
(client or server) of configuration parameters, normally follows Magic frame at
the start of an established HTTP/2 connection. If the stream identifier (Stream
ID) of SETTINGS frame is set to be 0× 0, It means that SETTINGS frame will
apply to an entirely HTTP/2 connection instead of a single stream. In HTTP/2
protocol specification [1], there are totally 6 defined configuration parameters,
in which 3 of them related to flow-control mechanism in an HTTP/2 connection.
Table 2 shows the three flow-control related parameters in SETTINGS frame.

WINDOW UPDATE Frame. The primary goal of WINDOW UPDATE
frame is to implement the flow-control mechanism that prevents from exceed-
ing capacity of the receiver in an HTTP/2 connection. WINDOW UPDATE
in HTTP/2 protocol specification [1] has two levels of application, one level
operates in an individual stream with a specific stream ID, while another level
operates in an entire HTTP/2 connection whose stream ID is zero. Basically,
HTTP/2 specification requires that receiver of WINDOW UPDATE frame must
re-calculate the corresponding window size according to the 31-bit “Window Size
Increment” field included in WINDOW UPDATE frame. For instance, if the
server-side advertises its initial window size in SETTINGS frame to be 16 KB



558 X. Ling et al.

Table 2. Flow-control parameters in SETTINGS frame

Parameters SETTINGS MAX

CONCURRENT STREAMS

SETTINGS INITIAL

WINDOW SIZE

SETTINGS MAX

FRAME SIZE

Functionality Defining the maximum
number of concurrent
streams that the sender
permits receiver to create in
this HTTP/2 connection

Defining the initial
window size of streams
in this HTTP/2
connection

Defining the maximum
frame payload size
that the sender allows
to receive in this
HTTP/2 connection

Value no limit(0–231 − 1), but
recommended value is ≥10

no limit(0–231 − 1),
initial value is 216 − 1

range(214–224 − 1),
initial value is 214

and sets “Window Size Increment” 5 KB in WINDOW UPDATE frame, then
the window size of server becomes 21 KB. In addition, the window size only
applies to DATA frame, which means that the flow-control mechanism affected
by the window size only constraints DATA frame instead of other frames like
HEADERS frame.

To summarize, both SETTINGS and WINDOW UPDATE frame play an
important role in HTTP/2 flow-control mechanism by means of altering or
updating window size kept by both sides in a stream or connection. Naturally,
“Window Size Increment” field in WINDOW UPDATE frame is used to increase
window size that receiver can process, while sending new SETTING frame with
smaller initial window size can cause window size reduces. Even window size can
be negative because of receiving DATA frame will consume window size, which
can make processes in streams stalled in the end.

4.2 H2DoS Attack Presentation

Conceptually, multiplexing and flow-control are two novel essential mechanisms
of HTTP/2 that introduced to improve web performance, however these excel-
lent mechanisms come at an expense that introducing new security threats
into servers and clients. In order to understand security threats evolved from
HTTP/2, we carry on a comprehensive security analysis of HTTP/2 protocol
specification [1] and find that both multiplexing and flow-control mechanisms
are vulnerable to application-layer DoS attacks. If exploiting multiplexing and
flow-control mechanisms, a DoS attack named H2DoS can be easily launched
by one malicious client to attack the victim web server.

The basic idea of H2DoS attack is natural and straightforward: a massive
number of HTTP/2 requests with limited receiving capacity are sent to consume
as many resources as possible, or even result in denial-of-service. To this end,
H2DoS attack exploits two following important amplification factors that derived
from both multiplexing and flow-control mechanisms.

– One amplification factor is to exploit HTTP/2 multiplexing mechanism since
HTTP/2 enables multiplexing vast number of streams over a single TCP
connection. Even though the attacker has to initial as many TCP connections



H2DoS Attack 559

as the victim, in HTTP/2 connection each TCP connection can maintain large
amount of streams to amplify malicious HTTP GET requests.

– Another amplification factor is to limit the receive processing window size to a
small size, which results in stalling all send processes of victim until the entire
response data is transmitted and thus occupying lots of server resources.

Figure 3 presents how a malicious client attack the victim web server by
launching application-level H2DoS attack and its attack proceeds as follows:

Fig. 3. H2DoS: HTTP/2 application-level DoS attack presentation

1. Before H2DoS attack, both TCP handshake and TLS handshake must be com-
pleted within a malicious client (called attacker) and a web server (called vic-
tim), followed by a Magic frame that initialized for establishing an HTTP/2
connection at first.

2. Then, the attacker sends a SETTINGS frame in stream 0. It means that the
SETTINGS frame applies to the entire HTTP/2 connection. Two configura-
tion parameters that mentioned in Table 2 are set up in this attack:
(a) one parameter is SETTINGS MAX CONCURRENT STREAM, which is

supposed to set to a big number as it specifies the maximum number
of streams created by the victim. And also, more streams in a connec-
tion means more threads allocated will be consumed. In fact, the max-
imum number of streams that the attacker can exploit is depend on



560 X. Ling et al.

the SETTINGS frame of victim. What attack can do is to acknowledge
the biggest SETTINGS MAX CONCURRENT STREAM value among
all SETTINGS frames and open as many streams as it allows.

(b) another parameter is SETTINGS INITIAL WINDOW SIZE, which
should be set as small as possible that allowed in a specific implementa-
tion software of HTTP/2 protocol in order to make the process of HTTP
response slower or even make the victim stalled.

3. The attacker next constructs an HTTP/2 GET request in stream 1, which
consists of a HEADERS frame and one or more subsequent CONTINUA-
TION frames. For the necessity of the subsequent CONTINUATION frames,
we enable the HTTP/2 GET request with a long header field, only small part
of it is sent in HEADERS frame and the other is sent in one or more CON-
TINUATION frames.

4. Owing to multiplexing mechanism of HTTP/2, we repeat sending carefully
constructed HTTP/2 request streams as above one after the other in odd-
numbered stream ID (1, 3, 5, . . . ).

5. To prevent victim web server from rejecting the HTTP/2 request, attacker
can send WINDOW UPDATE frame in stream 0 periodically with a “Window
Size Increment” field, but with a small size.

6. Since above processes are all in one single TCP connection, we can amplify
the attack consequence by opening more than one single TCP connection.

In short, to create an effective application-layer DoS attack against HTTP/2,
the whole H2DoS attack exploits two amplification factors that derived from
vulnerabilities of HTTP/2 in terms of both multiplexing and flow-control mech-
anisms. As H2DoS attack repeats sending HTTP/2 GET streams to the victim
infinitely, this attack can instantaneously occupy all available connections of the
victim. In theory, the starvation of all available connections is the root cause of
H2DoS attack. In addition, the H2DoS attack can also consume as much server
resources as possible, which further strengthens the effect of DoS attack.

5 Experiments and Results

In this session, we seek to answer two key questions:

– Is H2DoS attack a feasible DoS attack in real attack scenarios?
– Does H2DoS attack have more severe impact on the targeted victim compared

with other popular application-level DoS attacks? That is, can it become an
underlying severe factor of DDoS attack?

The intent of answering above two questions is to demonstrate both the feasibil-
ity and severity of it, respectively. To this end, we first present our experiment
setup, then observe experiment results from our experiments and analyze the
feasibility and severity around them.



H2DoS Attack 561

5.1 Experimental Setup

Our experiment setup consists of one victim web server and two clients: attacker
and benign user as shown in Fig. 4, respectively. Both the attacker and benign
user connect to victim server in HTTP/2. The attacker is a client that launches
H2DoS attack with malicious attack scripts, while the benign user is a normal
client that used for testing whether the victim is in service. The victim is the
web server that enabled with an HTTP/2 implementation and can be accessed
in HTTP/2 connections. Table 3 summarizes detail configurations of the experi-
ment environment. As mentioned in Sect. 3.2, nginx is the most widely adoption
in HTTP/2 implementations, therefore we choose the latest nginx stable version
to run on the victim server during the experiment execution.

Table 3. Detail configurations of the experiment environment

Configurations victim attacker benign user

Operating system Ubuntu 16.04.1 LTS Ubuntu 16.04.1 LTS Mac OSX 10.11.6

Processor 2 * Intel(R)
Core(TM) i5-4590
CPU @3.30 GHz

2 * Intel(R)
Core(TM) i5-4590
CPU @3.30 GHz

2.7 GHz Intel Core
i5

Memory 4 GB 4 GB 8 GB

HTTP/2
implementation

nginx/1.10.0(stable) Golang standard
http/2 library [16]

Google Chrome 58.0

Others Built with OpenSSL
1.0.2g TLS SNI
support enabled

H2DoS attack
implementation in
Go language

Google plug-in for
connection checking

Figure 4 illustrates a straightforward process of H2DoS attack: the attacker
first launches the malicious attack script towards the victim in step ❶, where
the malicious attack script implements H2DoS attack described in Fig. 3 as well
as other application-layer DoS attacks introduced in Sect. 2.1 for comparison.
In victim server, there is a performance monitor program that used to monitor
the server performances and record them down. Then during the attack, benign
user periodically request to access resources of victim using normal browser in
step ❷. Finally we check what contents that replied in the context of browser
request before in step ❸. If we get errors instead of normal contents from received
contents in benign user, we take it as the Denial-of-Service of victim that attacked
by H2DoS attack.

5.2 Experiment Result and Analysis

To answer the above two questions, we analyze in more detail for both the
feasibility and severity of H2DoS attack based on our observed experimental
results.



562 X. Ling et al.

Fig. 4. H2DoS attack experiment setup

Feasibility. We offer evidence of the feasibility of H2DoS attack by checking
whether the victim web server is always available for a benign user during H2DoS
attack. The connection checker illustrated in Fig. 4 is a customized browser plug-
in that used for application-layer connection checking and recording. Once the
H2DoS attack is launched against victim web server, we start to observe and
record what we receive from the web server in the connection checker. More
specifically, if we obtain an entire webpage with HTTP 200 (OK) status code in
responses, we consider the victim web server is available in service. By contrast,
if we obtain any error webpage with HTTP 500 (Internal Server Error) or other
5XX (Server Error) status codes [14], it means that victim itself has an error
and crashes down, which is a kind of Denial-of-Service atta. Figure 5(a) and
(b) visually show the content of benign user that received from victim web
server before and after H2DoS attack, respectively. We observe that the benign
user receives an entire webpage from the victim before H2DoS attack, while
after H2DoS attack the benign user receives an error webpage with HTTP 500
(Internal Server Error) status code. These observations indicate that H2DoS
attack indeed takes effect into the victim web server in terms of denial of service
attacks.

The root cause of application-layer DoS attack is that H2DoS attack can
occupy all available connections of the victim server and all streams are possibly
stuck on exhausted connection or stream windo. Figure 5(c) further depicts that
in our 30-min experiment as long as H2DoS attack starts from attacker client
to victim web server, the HTTP response status code of benign user quickly
changes from 200 to 500. The 500 status code is used for internal server error
when the server suffers from starvation of connections, which prevents the server
from replying any request. From what we have observed and analyzed above, the
feasibility of H2DoS attack is fully demonstrated in our experiments.

Severity. For severity, we measure the impact of H2DoS attack towards victim
web server and in what extent it enhances the severity if H2DoS is converted to



H2DoS Attack 563

Fig. 5. Observations on benign user that received from victim during H2DoS attack

Distributed Denial-of-Service (DDoS) attack against victim. Application-layer
DDoS attack generally consumes less bandwidth and are stealthier in nature
compared with other network-based DDoS attacks. Application-layer DDoS
attack mainly focuses on disrupting legitimate user services by exhausting the
server resources [22] like CPU and memory as much as possible.

Hence in the paper, we choose two key factors: CPU and Memory to measure
the application-layer DoS attack impact. We obtain both CPU usage and Mem-
ory usage of victim server with the performance monitor program illustrated in
Fig. 4. And the performance monitor is developed based on psutil [15], a process
and system utilities library in Python. Intuitively, larger CPU or Memory usage
consumption will result in larger probability of denying other benign users as



564 X. Ling et al.

Fig. 6. Observations of resources consumption on victim when attacked by H2DoS with
different number of TCP connections.

well as larger attack severity. In this part, we conduct two sets of experiments
and analyze the attack impact of H2DoS attack to confirm the severity intuition.

1. Severe impact of H2DoS attack. In this experiment, we analyze how
severe the impact of H2DoS attack is in terms of CPU and Memory usage.
Once the malicious client attacker begins to launch H2DoS attack against
victim server, the performance monitor is enabled to monitor both CPU and
Memory usage of victim server. Besides, we increase the number of TCP con-
nection within the same H2DoS attack in our experiment, in order to further
observe how the impact of H2DoS attack behaves in regard to TCP connec-
tions.
Figure 6(a) and (b) illustrate that H2DoS attack can maliciously consume
large volume of CPU and memory on the whole. Specifically, as depicted in
Fig. 6(a), the CPU usage is very high in the first several minutes and gradually
stabilizes later. That is because after several minutes the H2DoS attack takes
effect and the victim starts to reply error code instead of real contents, which
result in less CPU usage later. However, as depicted in Fig. 6(b), the Memory
usage is nearly unchanged except for the beginning of H2DoS attack. Further-
more when comparing different number of connections in H2DoS attack, we



H2DoS Attack 565

observe that the percentage of CPU consumption increases with the number
of TCP connections in general, while the percentage of Memory consumption
is amplified by connections all the time in our experiment.

2. Severe impact of H2DoS attack Versus Others. As observed
above, H2DoS attack has significantly severe impact on victim server. But
how does H2DoS attack compare with other application-layer DoS attacks is
still a challenge question. To evaluate the impact of H2DoS attack compar-
ing with other application-layer DoS attacks, we first fix the number of TCP
connections at 400 and examine the CPU and Memory usage of victim server
during attack duration in our experiment. Next, we choose slowloris [6], thc-
ssl-dos [7] and our H2DoS attack in regard to application-layer DoS attack
based on HTTP/1.1, HTTPS and HTTP/2, respec. Figure 7(b) and (c) show
the CPU and the Memory usage of above three types of application-layer
DoS attacks. Specifically, we show our results and evaluations in the follow-
ing three aspects that related to the impact on victim:

– Connectivity. Figure 7(a) shows that H2DoS can quickly bring down
the victim web server and replies with status code of HTTP 500 (Internal
Server Error) to the benign user. However, at both slowloris and thc-
ssl-dos attack duration, the victim server provides service with HTTP
200 status code to the benign user all the time. As depicted in Fig. 7(b)
and (c), we observe that while both the CPU and Memory usage of victim
caused by H2DoS attack do not exceed 50% over time in most cases, but
H2DoS leads to a real denial-of-service attack. In fact, either CPU and
Memory usage is not the exclusive reason for denial-of-service, the main
reason is that H2DoS occupies all available connections of the victim and
denies access to legitimate clients.

– CPU usage. As depicted in Fig. 7(b), the H2DoS attack consumes more
CPU than other two attacks on average, even though it decreases grad-
ually after around 10 min and becomes less than slowloris attack at the
end time of attack duration. One possible reason might be that at later
time H2DoS attack makes victim only reply with HTTP 500 error code
and not in the service as H2DoS results in starvation of victim connec-
tions, while slowloris is in the service all the time and maintains the
CPU usage.

– Memory usage. As depicted in Fig. 7(c), the H2DoS attack depletes
around ten times memory more than both slowloris and thc-ssl-
dos attack, because H2DoS can exploit multiplexing mechanism within
HTTP/2 to amplify the power of occupying memory resources on the
victim server.

To summarize, the experiments described above analyze in detail that how the
H2DoS attack takes affect on the performance of victim web server and demon-
strate the feasibility and severity of it in real attack scenarios. From the exper-
iment results, we can conclude that the commercial HTTP/2 implementation
nginx can be exploited and severely impacted by H2DoS attack.



566 X. Ling et al.

Fig. 7. Observations of HTTP response on benign user and resource consumption on
victim when attacked by different three kinds of application-layer DoS attacks.

6 Discussion

As we have presented, H2DoS can occupy all available connections of the victim
and completely deny the legitimate user from accessing the victim web servers.
Moreover, H2DoS attack can also consume more server resources than other
application-layer attacks on average in terms of CPU and memory usage. Strictly
speaking, this is an implementation and configuration problem of HTTP/2 spec-
ification in practice. We have measured that there are many top websites have
supported HTTP/2 and therefore the potential impact of the H2DoS attack



H2DoS Attack 567

is significant. We suggest that websites with such concerns could minimize the
impact of H2DoS attack by limiting the rate of requests and total number of con-
nections from the same client. As we believe that the starvation of connections
should not be present in any single benign request, we encourage developers of
any deployed website that processes HTTP/2 requests should review their rate
and total number with this threat in mind.

7 Related Work

Application-Layer DoS Against HTTP/2 Protocol. The understanding
and mitigation of security risks of DoS attack have been an active area of research
in recent years as DoS is a continuous critical threat on the current Inter-
net ecosystem. Recently, the research community has gradually shifted their
research interest from traditional network-layer based DoS attacks to escalat-
ing application-layer DoS attacks. There are lots of studies have been done
on application-layer DoS attacks [18–23]. Yi and Yu [18] showed that new
application-layer-based DDoS attacks can utilize legitimate HTTP requests to
overwhelm victim resources and proposed an anomaly detector to detect such
attacks on popular websites traffic. Jazi et al. [23] presented several unique fea-
tures that characterize application-layer attacks and proposed a nonparametric
CUSUM detection algorithm to detect them using found characterizes.

However, previous works of application-layer DoS attacks mostly bases on
HTTP/1.1 or HTTPS protocol as well as their defense mechanisms for mitiga-
tion. To the best of our knowledge, very few studies focus on application-layer
DoS attacks against HTTP/2 protocol and its various implementation softwares.
We describe these studies as below.

A report of Imperva Defense Center [24] releases four high-profile vulnerabili-
ties in total on new implementations of HTTP/2 from the major vendors. One of
the attacks reported is the slow read attack, which exploits a malicious client to
read responses very slowly from HTTP/2-enabled servers. Our work contributes
further in this regard by broadly exploring the possibilities of a more general
DoS against HTTP/2. We exploit both multiplexing and flow-control mecha-
nisms to create such general application-layer DoS attack: H2DoS attack, and
also systematically validate its feasibility as well as evaluate the impact of it.

Adi et al. [25] firstly presented that it is possible to launch a DoS attack using
apparently legitimate but malicious HTTP/2 flash crowd traffic. The malicious
HTTP/2 packets was crafted by exploited the “Window Size Increment” value in
WINDOW UPDATE frame to model flooding-based attack against the HTTP/2
victim web server, as well as performed four investigations to observe the effect
of resource consumption in the victim web server. Unfortunately, they limited
their attacks to WINDOW UPDATE frame and ignored other frames that can
also be exploited to further amplify the impact of their attack. Instead, we take
all frames into consideration and analyze the novel HTTP/2 flow-control and
multiplexing mechanisms in details to construct our H2DoS attack. Moreover,
we conduct a systematically experiment instead of four investigation observations
to present our attack model and demonstrate its feasibility and severity.



568 X. Ling et al.

Other Security Threats Against HTTP/2 Protocol. Prior work also has
shown others attacks that exploiting new features introduced in HTTP/2. Even
before HTTP/2 protocol was standardized, Redelmeier et al. [26] systematically
analyzed almost all possible security implications of HTTP/2 and explored a
series of potential or known areas of vulnerabilities for HTTP/2, including cross-
protocol attacks, intermediary encapsulation attacks and cacheability of pushed
resources and so on. (Kate) Pearce and Vincent [29] discussed how we can launch
multiplexing attacks over QUIC1 and within HTTP/2, as well as how to make
sense of and defend against H2/QUIC traffic on their network. It also indicated
that security tools must keep up with technique updating and people should be
aware of. Van Goethem and Vanhoef [28] introduced HEIST techniques and car-
ried out side-channel attacks against SSL/TLS purely in the browser to directly
infer the length of the plaintext message. By abusing new features of HTTP/2,
they found that the attack remained possible and even further increased the
impact of HEIST. Larsen and Villamil [27] introduced threats and vulnerabili-
ties discovered during the course of their research on the HTTP/2 protocol and
released first public HTTP/2 fuzzer - http2fuzz, which intended to find more
security vulnerabilities before HTTP/2 implementations were widely deployed.

8 Conclusion and Future Work

In this paper, we present a novel DoS attack against HTTP/2, H2DoS, which
can result in severe damages to web servers. First, we give the introduction of
several new features of HTTP/2 protocol and present how the current HTTP/2
is deployed in practice by performing a large-scale measurement on Alexa top
million websites. Second, we analyze the flow-control mechanism and propose the
novel H2DoS application-layer DoS attack, which can disrupt or even completely
deny legitimate users from accessing the victim web server. Finally, we conduct
a comprehensive study on the feasibility and severity of H2DoS attack in real
attack scenarios. We demonstrate that the malicious client can easily launch
H2DoS attack against web servers which support HTTP/2 protocol and make
the service unavailable or massively consume server resources. We also compare
our H2DoS attack with other application-layer DoS attacks, which show H2DoS
attack has more severe impact on the same victim web server.

In future work, we plan to explore more other vulnerabilities and attacks
against the HTTP/2 protocol of web security. As new features usually comes
unintentionally at the expense of new or unknown security threats, we believe
that HTTP/2 with new features also brings a lot of new attack vulnerabilities.
Since the proposed H2DoS attack poses serve threats to HTTP/2, we hope our
work will provide insight into those security issues and motivate to study other
potential security threats against HTTP/2. Finally, we also plan to open source
our H2DoS attack implementation to further promote the research on web secu-
rity of HTTP/2 protocol.

1 The QUIC Projects https://www.chromium.org/quic.

https://www.chromium.org/quic


H2DoS Attack 569

Acknowledgments. This work is supported by the National Key Research and
Development Program of China under No. 2016YFB0800102 and 2016YFB0800201,
the National High Technology Research and Development Program of China under
No. 2015AA015602 and 2015AA016103, the Key Research and Development Pro-
gram of Zhejiang Province under No. 2017C01064 and 2017C01055, the Fundamental
Research Funds for the Central Universities, the NSFC under program No. 61772466,
the Alibaba-Zhejiang University Joint Research Institute for Frontier Technologies
(A.Z.F.T.) under Program No. XT622017000118, and the CCF-Tencent Open Research
Fund under No. AGR20160109.

References

1. Mike, B., Roberto, P., Thomson, M: RFC 7540: hypertext transfer protocol version
2 (HTTP/2). Internet Engineering Task Force (IETF), Google Inc. (2015)

2. SPDY: An experimental protocol for a faster web. https://www.chromium.org/
spdy/spdy-whitepaper

3. Roberto, P., Ruellan, H.: HPACK: Header Compression for HTTP/2. No. RFC
7541, Internet Engineering Task Force (2015)

4. Thai, D., Juliano, R.: The CRIME attack. In: Ekoparty Security Conference (2012)
5. Radware Emergency Response Team: Global Application & Network Security

Report 2016–2017 (2016). https://www.radware.com/ert-report-2016/
6. RSnake, Kinsella, J.: Slowloris HTTP DoS. https://web.archive.org/web/

20150426090206/http://ha.ckers.org/slowloris
7. THC-SSL-DOS. http://kalilinuxtutorials.com/thc-ssl-dos/
8. Varvello, M., Schomp, K., Naylor, D., Blackburn, J., Finamore, A., Papagiannaki,

K.: Is the web HTTP/2 yet? In: Karagiannis, T., Dimitropoulos, X. (eds.) PAM
2016. LNCS, vol. 9631, pp. 218–232. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30505-9 17

9. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: How speedy
is SPDY? In: 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), pp. 387–399. Usenix Association (2014)

10. Meyer, C., Schwenk, J.: SoK: lessons learned from SSL/TLS attacks. In: Kim, Y.,
Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 189–209. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05149-9 12

11. Alexa Top Sites, September 2016. http://www.alexa.com/topsites
12. Friedl, S., Popov, A., Langley, A., Stephan, E.: Transport Layer Security (TLS)

Application-Layer Protocol Negotiation Extension, No. RFC 7301, IETF (2014)
13. Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2, No. RFC

5246, IETF (2008)
14. David, G., Totty, B.: HTTP: The Definitive Guide. O’Reilly Media, Sebastopol

(2002)
15. Rodola, G.: A cross-platform process and system utilities module for Python.

https://github.com/giampaolo/psutil
16. Fitzpatrick, B.: Http2 in GoDoc. https://godoc.org/golang.org/x/net/http2
17. NGINX Inc: nginx stable version 1.10.0, October 2016. https://nginx.org/en/linux

packages.html#stable
18. Yi, X., Yu, S.-Z.: Monitoring the application-layer DDoS attacks for popular web-

sites. IEEE/ACM Trans. Netw. (TON) 17(1), 15–25 (2009)

https://www.chromium.org/spdy/spdy-whitepaper
https://www.chromium.org/spdy/spdy-whitepaper
https://www.radware.com/ert-report-2016/
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris
http://kalilinuxtutorials.com/thc-ssl-dos/
https://doi.org/10.1007/978-3-319-30505-9_17
https://doi.org/10.1007/978-3-319-30505-9_17
https://doi.org/10.1007/978-3-319-05149-9_12
http://www.alexa.com/topsites
https://github.com/giampaolo/psutil
https://godoc.org/golang.org/x/net/http2
https://nginx.org/en/linux_packages.html#stable
https://nginx.org/en/linux_packages.html#stable


570 X. Ling et al.

19. Ranjan, S., Swaminathan, R., Uysal, M., Nucci, A., Knightly, E.: DDoS-shield:
DDoS-resilient scheduling to counter application layer attacks. IEEE/ACM Trans.
Netw. (TON) 17, 26–39 (2009)

20. Maci-Fernndez, G., Daz-Verdejo, J.E., Garca-Teodoro, P.: Mathematical model for
low-rate DoS attacks against application servers. IEEE Trans. Inf. Forensics Secur.
(TIFS) 4, 519–529 (2009)

21. Durcekova, V., Schwartz, L.: Sophisticated denial of service attacks aimed at appli-
cation layer. In: IELEKTRO, Nahid Shahmehri (2012)

22. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor.
15, 2046–2069 (2013)

23. Jazi, H.H., Gonzalez, H., Stakhanova, N., Ali, A.: Detecting HTTP-based applica-
tion layer DoS attacks on Web servers in the presence of sampling. Comput. Netw.
121, 25–36 (2017)

24. Imperva: HTTP/2: In-depth analysis of the top four flaws of the next generation
web protocol (2016). https://www.imperva.com/docs/Imperva HII HTTP2.pdf

25. Adi, E., Baig, Z.A., Hingston, P., Lam, C.-P.: Distributed denial-of-service attacks
against HTTP/2 services. Clust. Comput. 19, 79–86 (2016)

26. Redelmeier, I.: The Security Implications of HTTP/2.0 (2013). http://www.cs.
tufts.edu/comp/116/archive/fall2013/iredelmeier.pdf

27. Larsen, S., Villamil, J.: Attacking HTTP2 implementations. In: 13th PACific
SECurity - Applied Security Conferences and Training in Pacific Asia (PacSec)
(2015)

28. Van Goethem, T., Vanhoef, M.: HEIST: HTTP encrypted information can be
Stolen through TCP-windows, Blackhat, USA (2016)

29. (Kate) Pearce, C., Vincent, C.: HTTP/2 & QUIC - teaching good protocols to do
bad things, Blackhat, USA (2016)

https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
http://www.cs.tufts.edu/comp/116/archive/fall2013/iredelmeier.pdf
http://www.cs.tufts.edu/comp/116/archive/fall2013/iredelmeier.pdf

	H2DoS: An Application-Layer DoS Attack Towards HTTP/2 Protocol
	1 Introduction
	2 Background
	2.1 Application-Layer DoS Attack
	2.2 HTTP/2 Protocol

	3 HTTP/2 Current Deployment
	3.1 Measurement Setup
	3.2 Measurement Result

	4 Threat Model: H2DoS Attack
	4.1 HTTP/2 Flow-Control Mechanism Analysis
	4.2 H2DoS Attack Presentation

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Experiment Result and Analysis

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References




